Cycles in the De Rham Cohomology of Abelian Varieties over Number Fields

نویسنده

  • YUNQING TANG
چکیده

In his 1982 paper, Ogus defined a class of cycles in the de Rham cohomology of smooth proper varieties over number fields. This notion is a crystalline analogue of `-adic Tate cycles. In the case of abelian varieties, this class includes all the Hodge cycles by the work of Deligne, Ogus, and Blasius. Ogus predicted that such cycles coincide with Hodge cycles for abelian varieties. In this paper, we confirm Ogus’ prediction for some families of abelian varieties, under the assumption that these cycles lie in the Betti cohomology with real coefficients. These families include abelian varieties of prime dimension that have nontrivial endomorphism ring. The proof uses a crystalline analogue of Faltings’ isogeny theorem due to Bost and the known cases of the Mumford–Tate conjecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tropical Cycle Classes for Non-archimedean Spaces and Weight Decomposition of De Rham Cohomology Sheaves

This article has three major goals. First, we define tropical cycle class maps for smooth varieties over non-Archimedean fields, valued in the Dolbeault cohomology defined in terms of real forms introduced by Chambert-Loir and Ducros. Second, we construct a functorial decomposition of de Rham cohomology sheaves, called weight decomposition, for smooth analytic spaces over certain non-Archimedea...

متن کامل

Frobenius actions on the de Rham cohomology of Drinfeld modules

We study the action of endomorphisms of a Drinfeld A-module φ on its de Rham cohomology HDR(φ,L) and related modules, in the case where φ is defined over a field L of finite Acharacteristic p. Among others, we find that the nilspace H0 of the total Frobenius FrDR on HDR(φ,L) has dimension h = height of φ. We define and study a pairing between the p-torsion pφ of φ and HDR(φ,L), which becomes pe...

متن کامل

Dwork cohomology, de Rham cohomology, and hypergeometric functions

In the 1960’s, Dwork developed a p-adic cohomology theory of de Rham type for varieties over finite fields, based on a trace formula for the action of a Frobenius operator on certain spaces of p-analytic functions. One can consider a purely algebraic analogue of Dwork’s theory for varieties over a field of characteristic zero and ask what is the connection between this theory and ordinary de Rh...

متن کامل

LOGARITHMIC DIFFERENTIAL FORMS ON p-ADIC SYMMETRIC SPACES

We give an explicit description in terms of logarithmic differential forms of the isomorphism of P. Schneider and U. Stuhler relating de Rham cohomology of p-adic symmetric spaces to boundary distributions. As an application we prove a Hodgetype decomposition for the de Rham cohomology of varieties over p-adic fields which admit a uniformization by a p-adic symmetric space.

متن کامل

ar X iv : m at h / 01 10 07 0 v 1 [ m at h . A G ] 5 O ct 2 00 1 FROBENIUS SPLITTING AND ORDINARITY

We examine the relationship between the notion of Frobe-nius splitting and ordinarity for varieties. We show the following: a) The de Rham-Witt cohomology groups H i (X, W (OX)) of a smooth projec-tive Frobenius split variety are finitely generated over W (k). b) we provide counterexamples to a question of V. B. Mehta that Frobenius split varieties are ordinary or even Hodge-Witt. c) a Kummer K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016